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Money Laundering definition

Money Laundering is the process of making illicit funds hard or
impossible to distinguish from those acquired by legal means,

It is a complex process of obfuscation

Financial institutions implement electronic anti money
laundering systems, which function as an alert system that
escalates messages that are further reviewed by data analysts

Traditional approaches are typically rule-based system
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Graph Neural Networks (GNN)

The most common approach for developing graph neural
networks is through the Message Passing Neural Network
Framework.

First, a message function aggregates the current states of
neighboring nodes, as well as the features of connecting edges.

Then a vertex update function updates the hidden state of a
node v using the incoming messages from the neighboring
nodes

GNN message passing formalization:

mv
t+1 =

∑
w∈N(v)

Mt(h
v
t , h

w
t , evw ) (1)
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GNN - Message Passing

Figure: Process of message passing summarized [IGN24]. Created with
draw.io
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Autoencoders

Autoencoders(AEs) are a class of neural networks

Self-Supervised learning machine learning models

The model learns how to reconstruct input data based on
lower dimensional latent representations

Figure: The general architecture of an autoencoder
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Literature review - GNN used in Money Laundering
detection

Graph Neural Networks have been used successfully for anti
money laundering tasks

Weber et al. [WDC+19]

GCN with a skip connection for money laundering in bitcoin
transactions

Johannessen and Jullum [JJ23]

GNN architecture used to detect money laundering in a
network of transaction from the largest Norwegian bank

Egressy et al. [EvNB+24]

Combine key adaptations to standard graph neural networks in
order to render them a better fit for graphs of transactions

Xu et al. [XYW+24]

Rule Based systems combined with anomaly detection and
graph neural network models
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Original contributions

A novel approach for detecting money laundering using
autoencoder enhanced graph neural networks (GNNs)

Research questions:
[RQ1] Does integrating autoencoder components into the
edge classification problem improve the predictive performance
of money laundering detection?
[RQ2] What is the impact of integrating autoencoder
components in a GNN-based architecture for the task of
detecting illicit transactions in directed heterogeneous
multigraphs?
[RQ3] What are the most significant features for detecting
each type of transaction as provided by the SHAP
explainability approach?
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Motivation

We used this approach because we theorize that the nodes
would be more inclined to preserve and encode features that
are more important for defining the edges in their close
proximity.

Second, it helps differentiating edges with anomalous
behavior, which is of interest, as we presume that fraudulent
edges have some, albeit variable, specifics that ultimately
make their representations deviate from expected patterns.
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Methodology

Data representation
Graphs of financial transactions

Building the GNN model
Training the graph neural networks on the transaction graphs

Feature reconstruction
The autoencoder encodes the node embeddings

Attempt to reconstruct edge features based upon node
embeddings
The MSE given by the encoder is weighted by 0.1

Evaluation of results
computing the F1 for the minority class
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Data representation - Graph

Graph representation with nodes and edges

Transactions are represented as edges

Edges are directed edges
Accounts are represented as nodes
Pairs of accounts can have multiple edges between them
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Data representation - Graph

Figure: Example of financial data in graph format
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Dataset

Synthetic dataset created by IBM’s AMLWorld model [AE+23]

Statistics Higher Illicit Lower Illicit

Number of Days Spanned 10 10

Number of Bank Accounts 515K 705K

Number of Transactions 5M 7M

Number of Laundering Transactions 3.6K 4.0K

Laundering Rate (1 per N Trans) 981 1942

Table: Statistics for the ’Small’ subset of the dataset.
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GIN based AE architecture

For both cases the experiments were conducted using the following
parameters

Training Hyperparameters
Adam optimizer learning rate 0.006
Neighborhood Sampling: [100, 100]
Normal Transaction binary cross entropy weight: 1.00
Fraudulent Transaction binary cross entropy weight: 7.1
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GIN based AE architecture

Architecture of GIN based autoencoder:
Encoder: Node embedding Linear (num features → 64), Edge
embedding Linear (edge dim → 64), 2 GINEConv layers with
residual connections and BatchNorm, Final encoder Linear
(64 → 32) to latent space
Decoder: Concatenate latent node pairs (32× 2 = 64), MLP
(64 → 64 → edge dim) to reconstruct edge attributes
Classifier: Concatenate latent node features (64), original
edge attributes (edge dim), and reconstruction error (1), then
MLP (65 + edge dim → 50 → 25 → 2) for final prediction
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PNA based AE adaptations

PNA based autoencoder adaptations:
Reverse Message Passing: Handle incoming and outgoing
messages separately
EgoIDs: Flag which allows a node to detect whether it is part
of a cycle
Port Numbering: Unique labels for each node
Autoencoder: The encoder and the decoder are now
symmetric.
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Comparison to related work

Table: Performance of baselines and proposed architectures.

Model AML Small HI
LightGBM+GFs [AE+23] 62.86± 0.25
XGBoost+GFs [AE+23] 63.23± 0.17
GIN [XHLJ18, HLG+19]) 28.70± 1.13
GIN+AE 34.98
PNA [VFH+18] 56.77± 2.41
GIN+EU [BH+18] 47.73± 7.56
R-GCN [SK+18] 41.78± 0.48
GIN+EgoIDs [YGSYL21] 39.65± 4.73
GIN+Ports [SYK19] 54.85± 0.89
GIN+ReverseMP [JN+19] +Ports 46.79± 4.97
GIN+Ports 56.85± 2.64
+EgoIDs (Multi-GIN) 57.15± 4.99
Multi-GIN+EU 64.79± 1.22
Multi-PNA 64.59± 3.60
Multi-PNA+EU 68.16± 2.65
Multi-PNA+EU+AE 50.92
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Explainability

SHAP values, with roots in game theory

SHAP values computed using an XGBoost model

Graph features converted to tabular format using the
SNAPML library
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Explainability

Most important features are the payment format

Features which refer to patterns are also very important

Such as the number of neighboring nodes, the number of
transactions of a node, the ratios between them, etc.
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Explainability

Figure: Global feature importance
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Explainability

Only the the fan/degree ratio at the source node make the
transaction more likely to be fraudulent
The transaction sent a large amount of money
The transaction was simulated towards the beginning of the
process.

Figure: Normal transaction features
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Explainability

The transaction was conducted using the ACH format

The transaction has a small ratio of fan/degree for its starting
node

The 5 most important features (those with col3) represent
statistical features of the timestamp.

Figure: Fraudulent transaction features
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Conclusion and future work

Conclusions
We propose approaches for detecting money laundering in
homogeneous and heterogeneous multigraphs using GNN
enhanced with autoencoder components
Autoencoders enhance the classification performance for
homogeneous graphs, but the performance decays for
heterogeneous ones
Payment formats and the number of neighboring nodes of the
participating accounts have a significant predictive capability in
determining transactions involved in money laundering

Future work
Implement more complex autoencoder components
Implement autoencoder components on other GNN
architectures
Developing SHAP adaptations for explainability on edge
labelling tasks, directly applicable to GNNs
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Thank you!

Questions?
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